Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of the New Yo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annals of the New York Academy of Sciences
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/tz...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/31...
Other literature type . 2022
Data sources: Datacite
Annals of the New York Academy of Sciences
Article . 2022 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of global terrestrial near‐surface wind speed simulated by CMIP6 models and their future projections

تقييم سرعة الرياح الأرضية القريبة من السطح العالمية التي تحاكيها نماذج CMIP6 وتوقعاتها المستقبلية
Authors: Cheng Shen; Jinlin Zha; Zhibo Li; César Azorín-Molina; Kaiqiang Deng; Lorenzo Minola; Deliang Chen;

Evaluation of global terrestrial near‐surface wind speed simulated by CMIP6 models and their future projections

Abstract

AbstractWe evaluate the performance of Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating the observed global terrestrial near‐surface wind speed (NSWS) and project its future changes under three different Shared Socioeconomic Pathways (SSPs). Results show that the CESM2 has the best ability in reproducing the observed NSWS trends, although all models examined are generally not doing well. Based on projections of CESM2, the global NSWS will decrease from 2021 to 2100 under all three SSPs. The projected NSWS declines significantly over the north of 20°N, especially across North America, Europe, and the mid‐to‐high latitudes of Asia; meanwhile, it increases over the south of 20°N. Under SSP585, there would be more light‐windy days and fewer strong‐windy days than those under SSP245, which leads to a significant global NSWS decline. Robust hemispheric‐asymmetric changes in the NSWS could be due to the temperature gradient in the two hemispheres under global warming, with −1.2%, −3.5%, and −4.1% in the Northern Hemisphere, and 0.8%, 1.0%, and 1.5% in the Southern Hemisphere, for the near‐term (2021–2040), mid‐term (2041–2060), and long‐term (2081–2100), respectively.

Country
Spain
Related Organizations
Keywords

Atmospheric Science, Atmospheric sciences, Climate Change and Variability Research, Wind, Coupled model intercomparison project, Oceanography, Global Warming, Term (time), Wind speed, Climate change, Global change, Projections, Northern Hemisphere, Climatology, Global and Planetary Change, Latitude, Geography, Global warming, Physics, Temperature, Geology, Europe, Earth and Planetary Sciences, Physical Sciences, Southern Hemisphere, Geodesy, Climate Change, Near-surface wind speed, Climate model, Quantum mechanics, Environmental science, Windy days, Large ensembles, Meteorology, Humans, CMIP6, Original Articles, FOS: Earth and related environmental sciences, Numerical Weather Prediction Models, Environmental Science, Global Methane Emissions and Impacts, Forecasting, Climate Modeling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 40
    download downloads 100
  • 40
    views
    100
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC40100
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
29
Top 10%
Average
Top 10%
40
100
Green
hybrid