Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fuel Cell...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fuel Cell Science and Technology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling of Polymer Electrolyte Membrane Fuel Cell Stack End Plates

Authors: Hottinen, Tero; Ihonen, Jari; Uusalo; Heidi; Karvonen, Suvi;

Modeling of Polymer Electrolyte Membrane Fuel Cell Stack End Plates

Abstract

Good thermal and electric contacts of gas diffusion layers (GDLs) with electrode surface and flow-field plates are important for the performance of a polymer electrolyte membrane fuel cell (PEMFC). These contacts are dependent on the compression pressure applied on the GDL surface. The compression also affects the GDL porosity and permeability, and consequently has an impact on the mass transfer in the GDL. Thus, the compression pressure distribution on the GDL can have a significant effect on the performance and lifetime of a PEMFC stack. Typically, fuel cell stacks are assembled between two end plates, which function as the supporting structure for the unit cells. The rigidity of the stack end plates is crucial to the pressure distribution. In this work, the compression on the GDL with different end plate structures was studied with finite element modeling. The modeling results show that more uniform pressure distributions can be reached if ribbed-plate structures are used instead of the traditional flat plates. Two different materials, steel and aluminum, were compared as end plate materials. With a ribbed aluminum end plate structure and a certain clamping pressure distribution, it was possible to achieve nearly uniform pressure distribution within 10–15bars. The modeling results were verified with pressure-sensitive film experiments.

Keywords

modeling, fuel cells, compression, PEM fuel cell stack, PEM fuel cell, end plates, SDG 7 - Affordable and Clean Energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%