Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Engineering for Gas Turbines and Power
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Part Load Performance and Operating Strategies of a Natural Gas—Biomass Dual Fueled Microturbine for Combined Heat and Power Generation

Authors: CAMPOREALE, Sergio Mario; FORTUNATO, Bernardo; TORRESI, Marco; Turi F.; Pantaleo A.; Pellerano A.;

Part Load Performance and Operating Strategies of a Natural Gas—Biomass Dual Fueled Microturbine for Combined Heat and Power Generation

Abstract

The focus of this paper is on the part load performance of a small scale (100 kWe) combined heat and power (CHP) plant fired by natural gas (NG) and solid biomass to serve a residential energy demand. The plant is based on a modified regenerative microgas turbine (MGT), where compressed air exiting from recuperator is externally heated by the hot gases produced in a biomass furnace; then the air is conveyed to combustion chamber where a conventional internal combustion with NG takes place, reaching the maximum cycle temperature allowed by the turbine blades. The hot gas expands in the turbine and then feeds the recuperator, while the biomass combustion flue gases are used for preheating the combustion air that feeds the furnace. The part load efficiency is examined considering a single shaft layout of the gas turbine and variable speed regulation. In this layout, the turbine shaft is connected to a high speed electric generator and a frequency converter is used to adjust the frequency of the produced electric power. The results show that the variable rotational speed operation allows high the part load efficiency, mainly due to maximum cycle temperature that can be kept about constant. Different biomass/NG energy input ratios are also modeled, in order to assess the trade-offs between: (i) lower energy conversion efficiency and higher investment cost when increasing the biomass input rate and (ii) higher primary energy savings (PESs) and revenues from feed-in tariff available for biomass electricity fed into the grid. The strategies of baseload (BL), heat driven (HD), and electricity driven (ED) plant operation are compared, for an aggregate of residential end-users in cold, average, and mild climate conditions.

Country
Italy
Keywords

690, CHP; cogeneration; microturbine; gas turbine; externally fired; dual fuel; biomass; distributed generation, CHP, Microturbine, Externally fired, Bioma, Dual fuel, Gas turbine, Distributed generation, Cogeneration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%