
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermodynamic Analysis of Power Generation Cycles With High-Temperature Gas-Cooled Nuclear Reactor and Additional Coolant Heating Up to 1600 °C

doi: 10.1115/1.4038930
Nuclear energy is one of the possibilities ensuring energy security, environmental protection, and high energy efficiency. Among many newest solutions, special attention is paid to the medium size high-temperature gas-cooled reactors (HTGR) with wide possible applications in electric energy production and district heating systems. Actual progress can be observed in the literature and especially in new projects. The maximum outlet temperature of helium as the reactor cooling gas is about 1000 °C which results in the relatively low energy efficiency of the cycle not greater than 40–45% in comparison to 55–60% of modern conventional power plants fueled by natural gas or coal. A significant increase of energy efficiency of HTGR cycles can be achieved with the increase of helium temperature from the nuclear reactor using additional coolant heating even up to 1600 °C in heat exchanger/gas burner located before gas turbine. In this paper, new solution with additional coolant heating is presented. Thermodynamic analysis of the proposed solution with a comparison to the classical HTGR cycle will be presented showing a significant increase of energy efficiency up to about 66%.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
