Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Staged Thermal Conversion of Sewage Sludge in the Presence of Oxygen

Authors: Michał Czerep; Michał Ostrycharczyk; Jacek Zgóra; Halina Pawlak-Kruczek; Lukasz Niedzwiecki; Mateusz Wnukowski; Mateusz Kowal; +2 Authors

The Staged Thermal Conversion of Sewage Sludge in the Presence of Oxygen

Abstract

This study compares a staged thermal processing of the sewage sludge, with single step, integrated thermal processing. The aim of this study is to find the optimal conditions for drying and subsequently for carbonization/torrefaction of sewage sludge, regarding the energy consumption. This study presents the results of the drying tests performed at laboratory scale convective dryer for different parameters of drying agent (air). The tests were focused on finding and developing a method of drying that allows to minimize the energy consumption. Subsequently, both dry and vapothermal torrefaction was performed in the presence of oxygen. The kinetics of drying, using low quality heat as well as the properties of products and by-products of torrefaction in both regimes were determined. The process was characterized by mass yield and energy yield in both of the cases. There has been only scarce amount of literature studies published on the torrefaction of sewage sludge so far, without a detailed study of the composition of the torgas and tars of such origin. Performed study enables a comparison of two distinct scenarios of the processing, i.e., drying followed by dry torrefaction with a single stage of vapothermal torrefaction.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%