Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Thermal S...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thermal Science and Engineering Applications
Article . 2025 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental Investigation of Thermo-Hydraulic Characteristics and Sustainability Measure of a Novel Multi-Fluid Heat Exchanger for Turbulent Water-Based Nanofluid Flow Through the Inserted Brazed Helix Tube

Authors: Belal Almasri; Sudhansu S. Mishra; Taraprasad Mohapatra; Vikas Bargah;

Experimental Investigation of Thermo-Hydraulic Characteristics and Sustainability Measure of a Novel Multi-Fluid Heat Exchanger for Turbulent Water-Based Nanofluid Flow Through the Inserted Brazed Helix Tube

Abstract

Abstract A novel multi-fluid heat exchanger deployed for simultaneous heating of water and space is experimentally investigated to predict its thermo-hydraulic, exergetic, and sustainability performance for distinct Al2O3, TiO2, and CuO nanofluid (NF) flow of 50 ppm concentration of each through the inserted brazed helix tube (BHT). The input parameters such as flowrates, helix tube diameters, and nanofluid types are varied throughout the experiments to evaluate their effect on output performance parameters i.e., Nusselt number (Nu), friction factor ( f), entropy generation number (Ns), JF factor (JF), exergy efficiency (ƐE), and sustainability index (SI). The NF flowing through the BHT is the heating fluid that simultaneously heated the cold water, and cold air flowing through the outer shell and inner conduit of the BHT respectively. A distinct Nusselt number correlation for turbulent nanofluid flow inside BHT was developed, compared, and validated reasonably with the current result. For Al2O3 NF at a Reynolds number of 5698 with a 1/2-in. diameter helix tube, the best results for JF, ƐE, and SI are found to be 0.009, 0.72, and 3.53, respectively. Furthermore, for Al2O3 and TiO2 NF at a Reynolds number of 14,250 and a helix tube diameter of 3/8 in. and 1/2 in., f, and Ns are found to be 0.0047 and 0.043, respectively are minimum. It is observed that the use of Al2O3 NF, higher helix tube diameters, and lower flowrates all make the proposed heating application more sustainable.

Powered by OpenAIRE graph
Found an issue? Give us feedback