Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1115/gt2015...
Conference object . 2015 . Peer-reviewed
Data sources: Crossref
Journal of Engineering for Gas Turbines and Power
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean Burn Combustor With Representative Swirling Flow

Authors: ANDREINI, ANTONIO; FACCHINI, BRUNO; BECCHI, RICCARDO; PICCHI, ALESSIO; Turrini, Fabio;

Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean Burn Combustor With Representative Swirling Flow

Abstract

International standards regarding polluting emissions from civil aircraft engines are becoming gradually even more stringent. Nowadays, the most prominent way to meet the target of reducing NOx emissions in modern aero-engine combustors is represented by lean burn technology. Swirl injectors are usually employed to provide the dominant flame stabilization mechanism coupled to high efficiency fuel atomization solutions. These systems generate very complex flow structures such as recirculations, vortex breakdown and processing vortex core, that affect the distribution and therefore the estimation of heat loads on the gas side of the liner as well as the interaction with the cooling system flows. The main purpose of the present work is to provide detailed measurements of Heat Transfer Coefficient (HTC) on the gas side of a scaled combustor liner highlighting the impact of the cooling flows injected through a slot system and an effusion array. Furthermore, for a deeper understanding of the interaction phenomena between gas and cooling flows, a standard 2D PIV (Particle Image Velocimetry) technique has been employed to characterize the combustor flow field. The experimental arrangement has been developed within EU project LEMCOTEC and consists of a non-reactive three sectors planar rig installed in an open loop wind tunnel. Three swirlers, replicating the real geometry of a GE Avio PERM (Partially Evaporated and Rapid Mixing) injector technology, are used to achieve representative swirled flow conditions in the test section. The effusion geometry is composed by a staggered array of 1236 circular holes with an inclination of 30deg, while the slot exit has a constant height of 5mm. The experimental campaign has been carried out using a TLC (Thermochromic Liquid Crystals) steady state technique with a thin Inconel heating foil and imposing several cooling flow conditions in terms of slot coolant consumption and effusion pressure drop. A data reduction procedure has been developed to take into account the non-uniform heat generation and the heat loss across the liner plate. Results, in terms of 2D maps and averaged distributions of HTC have been supported by flow field measurements with 2D PIV technique focussed on the corner recirculation region.

Country
Italy
Keywords

Energy Engineering and Power Technology; Fuel Technology; Mechanical Engineering; Nuclear Energy and Engineering; Aerospace Engineering, Hea Transfer, combustor, liner, TLC, slot, effusion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%