
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV

doi: 10.1117/12.2028624
Hyperspectral imaging based precise fertilization is challenge in the northern Europe, because of the cloud conditions. In this paper we will introduce schemes for the biomass and nitrogen content estimations from hyperspectral images. In this research we used the Fabry-Perot interferometer based hypespectral imager that enables hyperspectral imaging from lightweight UAVs. During the summers 2011 and 2012 imaging and flight campaigns were carried out on the Finnish test field. Estimation mehtod uses features from linear and non-linear unmixing and vegetation indices. The results showed that the concept of small hyperspectral imager, UAV and data analysis is ready to operational use.
- University of Jyväskylä Finland
- Finnish Geospatial Research Institute Finland
- Finnish Geospatial Research Institute Finland
- University of Jyväskylä Finland
ta113, unmixing, biomass, erottelu, hyperspectral imaging, UAV, ta4111, nitrogen, typpi, biomassa (teollisuus), ta119, ta218
ta113, unmixing, biomass, erottelu, hyperspectral imaging, UAV, ta4111, nitrogen, typpi, biomassa (teollisuus), ta119, ta218
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
