Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fraunhofer-ePrints
Article . 2013
Data sources: Fraunhofer-ePrints
Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
Science
Article . 2013
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit

Authors: Magnus T. Borgström; Damir Asoli; Hongqi Xu; Hongqi Xu; Knut Deppert; Martin Magnusson; Ingvar Åberg; +8 Authors

InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit

Abstract

Improving Nanowire Photovoltaics In principle, solar cells based on arrays of nanowires made from compound inorganic semiconductors, such as indium phosphide (InP), should decrease materials and fabrication costs compared with planar junctions. In practice, device efficiencies tend to be low because of poor light absorption and increased rates of unproductive charge recombination in the surface region. Wallentin et al. (p. 1057 , published online 17 January) now report that arrays of p-i-n InP nanowires (that switch from positive to negative doping), grown to millimeter lengths, can be optimized by varying the nanowire diameter and length of the n-doped segment. Efficiencies as high as 13.8% were achieved, which are comparable to the best planar InP photovoltaics.

Country
Germany
Keywords

Farbstoff, Organische und Neuartige Solarzellen, III-V Epitaxie und Solarzellen, III V: Epitaxie, Solarzelle und Bauelement, Materialien - Solarzellen und Technologie, alternative Photovoltaik-Technologie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.01%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 0.01%
Funded by
Related to Research communities
Energy Research