Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied and Environmental Microbiology
Article . 1977 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum

Authors: J. G. Zeikus; Paul J. Weimer;

Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum

Abstract

The fermentation of cellulose and cellobiose by Clostridium thermocellum monocultures and C. thermocellum/Methanobacterium thermoautotrophicum cocultures was studied. All cultures were grown under anaerobic conditions in batch culture at 60 degrees C. When grown on cellulose, the coculture exhibited a shorter lag before initiation and growth and celluloysis than did the monoculture. Cellulase activity appeared earlier in the coculture than in the monoculture; however, after growth had ceased, cellulase activity was greater in the monoculture. Monocultures produced primarily ethanol, acetic acid, H2 and CO2. Cocultures produced more H2 and acetic acid and less ethanol than did the monoculture. In the coculture, conversion of H2 to methane was usually complete, and most of the methane produced was derived from CO2 reduction rather than from acetate conversion. Agents of fermentation stoppage were found to be low pH and high concentrations of ethanol in the monoculture and low pH in the coculture. Fermentation of cellobiose was more rapid than that of cellulose. In cellobiose medium, the methanogen caused only slight changes in the fermentation balance of the Clostridium, and free H2 was produced.

Keywords

Clostridium, Hot Temperature, Bacteria, Ethanol, Acetates, Carbon Dioxide, Disaccharides, Butyrates, Cellulase, Fermentation, Lactates, Anaerobiosis, Cellulose, Methane, Hydrogen

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research