Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied and Environmental Microbiology
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contribution of Fungi and Bacteria to Leaf Litter Decomposition in a Polluted River

Authors: Pascoal, Cláudia; Cássio, Fernanda;

Contribution of Fungi and Bacteria to Leaf Litter Decomposition in a Polluted River

Abstract

ABSTRACT The contribution of fungi and bacteria to the decomposition of alder leaves was examined at two reference and two polluted sites in the Ave River (northwestern Portugal). Leaf mass loss, microbial production from incorporation rates of radiolabeled compounds into biomolecules, fungal biomass from ergosterol concentration, sporulation rates, and diversity of aquatic hyphomycetes associated with decomposing leaves were determined. The concentrations of organic nutrients and of inorganic nitrogen and phosphorus in the stream water was elevated and increased at downstream sites. Leaf decomposition rates were high (0.013 day −1 < k < 0.042 day −1 ), and the highest value was estimated at the most downstream polluted site, where maximum values of microbial production and fungal biomass and sporulation were found. The slowest decomposition occurred at the other polluted site, where, along with the nutrient enrichment, the lowest current velocity and dissolved-oxygen concentration in water were observed. At this site, fungal production, biomass, and sporulation were depressed, suggesting that stimulation of fungal activity by increased nutrient concentrations might be offset by other factors. Although bacterial production was higher at polluted sites, fungi accounted for more than 94% of the total microbial net production. Fungal yield coefficients varied from 10.2 to 13.6%, while those of bacteria were less than 1%. The contribution of fungi to overall leaf carbon loss (29.0 to 38.8%) greatly exceeded that of bacteria (4.2 to 13.9%).

Country
Portugal
Related Organizations
Keywords

Science & Technology, Bacteria, Nitrogen, Water Pollution, Fungi, Decomposers, Spores, Fungal, Leaf decomposition, Aquatic hyphomycetes, Plant Leaves, Kinetics, Aquatic fungi, Biomass, Water Microbiology, Polluted streams

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    282
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 33
    download downloads 11
  • 33
    views
    11
    downloads
    Data sourceViewsDownloads
    Universidade do Minho: RepositoriUM3311
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
282
Top 1%
Top 10%
Top 10%
33
11
Green
bronze