Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Национальный агрегат...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Izvestiya Atmospheric and Oceanic Physics
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phase Shift between Changes in Global Temperature and Atmospheric CO2 Content under External Emissions of Greenhouse Gases into the Atmosphere

Authors: A. V. Timazhev; K. E. Muryshev; M. M. Arzhanov; S. N. Denisov; Alexey V. Eliseev; Alexey V. Eliseev; Alexey V. Eliseev; +3 Authors

Phase Shift between Changes in Global Temperature and Atmospheric CO2 Content under External Emissions of Greenhouse Gases into the Atmosphere

Abstract

© 2019, Pleiades Publishing, Ltd. Abstract: The phase shift between changes in the global surface temperature Tg and atmospheric CO2 content (Formula Presented.) has been shown earlier not to characterize causal relationships in the Earth system in the general case. Specifically, the sign of this phase shift under nongreenhouse radiative forcing changes depends on the time scale of this forcing. This paper analyzes the phase shift between changes in the global surface temperature Tg and the atmospheric CO2 content (Formula Presented.) under synchronous external emissions of carbon dioxide and methane into the atmosphere on the basis of numerical experiments with the IAP RAS climatic model and a conceptual climate model with carbon cycle. For a sufficiently large time scale of external forcing, the changes in (Formula Presented.) lag relative to the corresponding changes in Tg.

Country
Russian Federation
Keywords

climate change, 550, carbon cycle, methane cycle, 530, IAP RAS CM, causal relationships

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average