Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BIOPHYSICSarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BIOPHYSICS
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The efficiency of non-photochemical fluorescence quenching of phycobilisomes by the orange carotenoid protein

Authors: Igor N. Stadnichuk; Pavel M. Krasilnikov; Dmitry V. Zlenko;

The efficiency of non-photochemical fluorescence quenching of phycobilisomes by the orange carotenoid protein

Abstract

We report on theoretical efficiency of non-photochemical fluorescense quenching of phycobilisomes by the orange carotenoid protein. The created 3D computer model of the three-cylindrical phycobilisomes core allowed us to determine the distances between centers of mass of all phycobilin chromophores of the core and calculate the time and an average number of energy migration steps for the resulting non-radiative excitation transfer from the phycobilisomes to photosystem II. The obtained kinetic scheme equations for a way of energy transfer confirm the incomplete interception of energy flow in the phycobilisomes core by the orange carotenoid protein. Theoretical estimation of the rate of phycobilisomes quenching is in good agreement with experimental data.

Related Organizations
Keywords

Kinetics, Bacterial Proteins, Energy Transfer, Phycobilisomes, Computer Simulation, Fluorescence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research