Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Canadian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canadian Journal of Forest Research
Article . 2019 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Root and shoot phenology and root longevity of Norway spruce saplings grown at different soil temperatures

Authors: Kilpeläinen, Jouni; Domisch, Timo; Lehto, Tarja; Finér, Leena; Aphalo, Pedro J.; Leinonen, Ilkka; Ryyppö, Aija; +1 Authors

Root and shoot phenology and root longevity of Norway spruce saplings grown at different soil temperatures

Abstract

Tree roots comprise a huge carbon pool. Their dynamics are driven by environmental factors and thereby affected by climate change. We studied the effects of soil temperature on root and shoot phenology and their linkages in Norway spruce (Picea abies (L.) Karst.). Saplings were grown in controlled-environment rooms for three simulated growing seasons (GS1, GS2, and GS3). Soil-temperature treatments of 9, 13, 18, and 21 °C were applied during GS2. Root growth was monitored with minirhizotrons and commenced in all treatments simultaneously. Temporal growth patterns of short and long roots were usually bimodal. Root growth was very low during the coldest treatment of GS2 but increased during GS3 as an aftereffect. During GS3, growth of short roots continued later after colder treatments than warmer treatments. Reduced sink strength of roots and increased carbohydrate accumulation into needles at 9 °C during GS2 probably enabled compensatory root growth under restored temperatures during GS3. Soil temperature did not affect shoot phenology, and root and shoot phenology varied between growing seasons; thus, the linkage of root and shoot phenology was inconsistent. In warmer soil, root longevity was shorter and turnover rate was higher than in colder soil. This can further affect soil carbon dynamics and ecosystem carbon cycling in boreal forest ecosystems.

Countries
Canada, Finland
Keywords

580, 570, 550, Picea abies, minirhizotron, fine-root survival, ilmastonmuutokset, miniritsotroni, fine-root dynamics, juurten dynamiikka, kuusi, juurten elinaika, climate change

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
bronze