
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
β-Glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass

doi: 10.1139/w11-052
pmid: 21815831
β-Glucosidase activity plays an essential role for efficient and complete hydrolysis of lignocellulosic biomass. Direct use of fungal fermentation broths can be cost saving relative to using commercial enzymes for production of biofuels and bioproducts. Through a fungal screening program for β-glucosidase activity, strain AP (CBS 127449, Aspergillus saccharolyticus ) showed 10 times greater β-glucosidase activity than the average of all other fungi screened, with Aspergillus niger showing second greatest activity. The potential of a fermentation broth of strain AP was compared with the commercial β-glucosidase-containing enzyme preparations Novozym 188 and Cellic CTec. The fermentation broth was found to be a valid substitute for Novozym 188 in cellobiose hydrolysis. The Michaelis–Menten kinetics affinity constant as well as performance in cellobiose hydrolysis with regard to product inhibition were found to be the same for Novozym 188 and the broth of strain AP. Compared with Novozym 188, the fermentation broth had higher specific activity (11.3 U/mg total protein compared with 7.5 U/mg total protein) and also increased thermostability, identified by the thermal activity number of 66.8 vs. 63.4 °C for Novozym 188. The significant thermostability of strain AP β-glucosidases was further confirmed when compared with Cellic CTec. The β-glucosidases of strain AP were able to degrade cellodextrins with an exo-acting approach and could hydrolyse pretreated bagasse to monomeric sugars when combined with Celluclast 1.5L. The fungus therefore showed great potential as an onsite producer for β-glucosidase activity.
Cellobiose, Hydrolysis, beta-Glucosidase, Industrial Microbiology, Aspergillus, DNA, Ribosomal Spacer, Dextrins, Fermentation, Cellulases, Aspergillus niger, Biomass, Cellulose, DNA, Fungal
Cellobiose, Hydrolysis, beta-Glucosidase, Industrial Microbiology, Aspergillus, DNA, Ribosomal Spacer, Dextrins, Fermentation, Cellulases, Aspergillus niger, Biomass, Cellulose, DNA, Fungal
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
