
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Data-driven surrogates for rapid simulation and optimization of WAG injection in fractured carbonate reservoirs

Conventional simulation of fractured carbonate reservoirs is computationally expensive because of the multiscale heterogeneities and fracture–matrix transfer mechanisms that must be taken into account using numerical transfer functions and/or detailed models with a large number of simulation grid cells. The computational requirement increases significantly when multiple simulation runs are required for sensitivity analysis, uncertainty quantification and optimization. This can be prohibitive, especially for giant carbonate reservoirs. Yet, sensitivity analysis, uncertainty quantification and optimization are particularly important to analyse, determine and rank the impact of geological and engineering parameters on the economics and sustainability of different Enhanced Oil Recovery (EOR) techniques. We use experimental design to set up multiple simulations of a high-resolution model of a Jurassic carbonate ramp, which is an analogue for the highly prolific reservoirs of the Arab D Formation in Qatar. We consider CO 2 water-alternating-gas (WAG) injection, which is a successful EOR method for carbonate reservoirs. The simulations are employed as a basis for generating data-driven surrogate models using polynomial regression and polynomial chaos expansion. Furthermore, the surrogates are validated by comparing surrogate predictions with results from numerical simulation and estimating goodness-of-fit measures. In the current work, parameter uncertainties affecting WAG modelling in fractured carbonates are evaluated, including fracture network properties, wettability and fault transmissibility. The results enable us to adequately explore the parameter space, and to quantify and rank the interrelated effect of uncertain model parameters on CO 2 WAG efficiency. The results highlight the first-order impact of the fracture network properties and wettability on hydrocarbon recovery and CO 2 utilization during WAG injection. In addition, the surrogate models enable us to calculate quick estimates of probabilistic uncertainty and to rapidly optimize WAG injection, while achieving significant computational speed-up compared with the conventional simulation framework.
- Heriot-Watt University United Kingdom
- University of Stuttgart Germany
- Università degli studi di Salerno Italy
- Heriot-Watt University United Kingdom
- Imperial College London United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
