
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Single-Chamber SOFCs with a Ce[sub 0.9]Gd[sub 0.1]O[sub 1.95] Electrolyte Film for Low-Temperature Operation

doi: 10.1149/1.1836120
Single-chamber solid oxide fuel cells (SOFCs) with an anode-supported Ce 0 . 9 Gd 0 . 1 O 1 . 9 5 electrolyte were operated in a mixture of butane and air at furnace temperatures of 200-300°C. The electromotive force (emf) of the cell and the voltage drop were strongly influenced by the catalytic activity of the anode for the partial oxidation of butane. The promotion of hydrogen formation by the addition of Ru to the anode caused an increase in the emf and a reduction in the voltage drop. As a result, stable power densities of 44 and 176 mW cm - 2 were obtained at 200 and 300°C, respectively.
solid oxide fuel cells, catalysis, oxidation, electric potential, solid electrolytes, electrochemical electrodes
solid oxide fuel cells, catalysis, oxidation, electric potential, solid electrolytes, electrochemical electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
