
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Insights into Chemical and Electrochemical Interactions between Zn Anode and Electrolytes in Aqueous Zn−ion Batteries

Aqueous Zn-ion batteries (ZIBs) have garnered significant interest in recent years due to their potential applications in large-scale stationary energy storage. Early ZIBs research has primarily focused on searching for better cathodes and understanding cathodic Zn2+ storage mechanisms. Only very recently has ZIBs research shifted to Zn anode. Here in this study, we report on insights into the interactions between Zn anode and aqueous Zn-salt electrolytes gained by a systematic investigation of bulk properties of electrolytes, surface properties of the reacted Zn, electrokinetics of Zn/Zn2+ redox reaction and cycle stability of Zn/electrolyte/Zn symmetrical cells. We found that Zn metal surface, regardless of electrolyte, are always covered by a layer of Zn-containing layered double hydroxides (Zn-LDHs) upon contact with aqueous Zn-electrolytes. We show that “OH− production” pathway resulted from the dissolved oxygen in Zn-electrolytes is the root cause for the Zn-LDHs formation. The electrokinetic studies reveal that Zn/Zn(ClO4)2 interface has the highest exchange current density, while the symmetrical cell tests show that Zn(OTf)2 is the most stable electrolyte for Zn-metal anode.
- University of South Carolina Lancaster United States
- University of South Carolina Lancaster United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
