
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Prediction of Power Outage Quantity of Distribution Network Users under Typhoon Disaster Based on Random Forest and Important Variables

doi: 10.1155/2021/6682242
Typhoons can have disastrous effects on power systems. They may lead to a large number of power outages for distribution network users. Therefore, this paper establishes a model to predict the power outage quantity of distribution network users under a typhoon disaster. Firstly, twenty-six explanatory variables (called global variables) covering meteorological factors, geographical factors, and power grid factors are considered as the input variables. On this basis, the correlation between each explanatory variable and response variable is analyzed. Secondly, we established a global variable model to predict the power outage quantity of distribution network users based on Random Forest (RF) algorithm. Then the importance of each explanatory variable is mined to extract the most important variables. To reduce the complexity of the model and ease the burden of data collection, eight variables are eventually selected as important variables. Afterward, we predict the power outage quantity of distribution network users again using the eight important variables. Thirdly, we compare the prediction accuracy of a model called the No-model that has been used before, Linear Regression (LR), Support Vector Regression (SVR), Decision Tree Regression (DTR), RF-global variable model, and RF-important variable model. Simulation results show that the RF-important variable model proposed in this paper has a better effect. Since fewer variables can save prediction time and make the model simplified, it is recommended to use the RF-important variable model.
- Wuhan University of Technology China (People's Republic of)
- Electric Power Research Institute United States
- China Southern Power Grid (China) China (People's Republic of)
- China Southern Power Grid (China) China (People's Republic of)
- Wuhan Polytechnic University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
