Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Energy Research
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Effect of Biodiesel, Ethanol, and Water on the Performance and Emissions of a Dual-Fuel Diesel Engine with Natural Gas: Sustainable Energy Production through a Life Cycle Assessment Approach

Authors: Amir Hashemi-Nejhad; Bahman Najafi; Sina Ardabili; Gholamhossein Jafari; Amirhosein Mosavi;

The Effect of Biodiesel, Ethanol, and Water on the Performance and Emissions of a Dual-Fuel Diesel Engine with Natural Gas: Sustainable Energy Production through a Life Cycle Assessment Approach

Abstract

Diesel fuel (DF) is a significant power supply in agricultural, industrial, and transportation applications. Establishing sustainable and renewable fuel substitutes for diesel has become increasingly common due to the rising expense of petroleum resources and the pollution rate crises. A biodiesel-DF mixture in a dual-fuel (DuF) diesel engine (DE) can bring favorable environmental results. In the present study, three rates of ethanol (0, 2, and 4%), two rates of biodiesel (0 and 5%), and four rates of water (0, 0.3, 0.6, and 0.9%) were blended with DF. All these samples were considered pilot fuel (PF) in the DuF combustion process with an 80% natural gas (NG) replacement percentage. The combustion process was investigated from engine emissions and performance, power cost, and life cycle assessment (LCA) to obtain a sustainable fuel formulation. As a result, water, ethanol, and the combination of water-ethanol and NG can enhance the DE’s performance by rising the inside pressure of the cylinder. The presence of oxygen content in ethanol can improve the combustion process by pushing the combustion towards complete combustion. The optimum engine performance point at full load was obtained with a fuel sample containing 1.57% biodiesel, 4.38% ethanol, 1.1% water, and 80% NG. In optimum condition, the brake power (BP) was 24.16 kW, and the brake-specific fuel consumption (BSFC) was 60.64 g/kWh. This fuel sample produces 0.46, 364.08, 1.66, and 1088.29 g/kWh of BSCO, BSCO2, BSNOx, and BSO2, respectively. At this point, the energy production cost was $0.783/kWh. The environmental impacts of the combustion process at optimal fuel formulation were 0.34249, 1.00 E + 02 , 1.53 E + 00 , and 1.94 E − 06 , respectively, for ecosystem quality (EQ) (PDF ∗ m2 ∗ yr), resources (R) (MJ primary), climate change (CCh) (kg CO2 eq), and human health (HH) (DALY). Accordingly, the best fuel combination was selected to be NG+B1.5E4.3W1.1.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold