Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Energy Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermoeconomic Analysis of a Solar‐Assisted Industrial Process Heating System

Authors: Laveet Kumar; M. Hasanuzzaman; N. A. Rahim; Ahmad K. Sleiti;

Thermoeconomic Analysis of a Solar‐Assisted Industrial Process Heating System

Abstract

Thermal energy in the industrial sector for process heating applications in the range of 50 to 250°C consumes about 35% of the global fossil fuel. Cascaded solar thermal systems are promising solutions to meet clean and uninterrupted thermal energy supply for industrial process heating. Well‐engineered cascaded arrangement of solar thermal collector (STC) and photovoltaic thermal (PVT) collector can attain an average solar fraction of more than 50%. In the present research, a solar‐assisted process heating system, wherein a STC integrated in series with PVT, has been designed to produce low‐ to medium‐temperature heat at higher solar fractions. Herein, thermal performance and economic viability of this novel system have been investigated and analyzed methodically. In the present research, a comprehensive TRNSYS simulation model is developed and validated experimentally. Results show that PVT integrated with heat pipe evacuated tube collector (PVT‐HPETC) and PVT integrated with flat plate collector (PVT‐FPC) system can generate thermal energy as high as 1625 and 1420 W with a thermal efficiency of 81 and 77% and exergy efficiency of 13.22 and 12.72%. Levelized cost of heat (LCOH) for PVT‐HPETC at process heat temperatures of 60, 70, and 80°C is 0.214, 0.208, and 0.201 MYR/kWh, respectively. It is worth to note that LCOH is less than the existing cost of heat generation which proves that these systems are economically feasible.

Countries
Qatar, Qatar, Malaysia
Keywords

Heat pipes, 330, Thermoeconomic analysis, Industrial sector, Heating equipment, TA Engineering (General). Civil engineering (General), TJ Mechanical engineering and machinery, Thermal energy, Solar power generation, Industrial processs, Solar heating, Heating applications, Solar thermal collector, Heating system, Solar thermal energy, Fossil fuels, 620, Solar assisted, Photovoltaic thermals, Solar fraction, Collector efficiency, Levelized costs

Powered by OpenAIRE graph
Found an issue? Give us feedback