Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Amer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DLR publication server
Other literature type . 2013
Bulletin of the American Meteorological Society
Article . 2013 . Peer-reviewed
Data sources: Crossref
Bulletin of the American Meteorological Society
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aerosols for Concentrating Solar Electricity Production Forecasts: Requirement Quantification and ECMWF/MACC Aerosol Forecast Assessment

Authors: Schroedter-Homscheidt, Marion; Oumbe, Armel; Benedetti, Angela; Morcrette, Jean-Jacques;

Aerosols for Concentrating Solar Electricity Production Forecasts: Requirement Quantification and ECMWF/MACC Aerosol Forecast Assessment

Abstract

The potential for transferring a larger share of our energy supply toward renewable energy is a widely discussed goal in society, economics, environment, and climate-related programs. For a larger share of electricity to come from fluctuating solar and wind energy-based electricity, production forecasts are required to ensure successful grid integration. Concentrating solar power holds the potential to make the fluctuating solar electricity a dispatchable resource by using both heat storage systems and solar production forecasts based on a reliable weather prediction. These solar technologies exploit the direct irradiance at the surface, which is a quantity very dependent on the aerosol extinction with values up to 100%. Results from present-day numerical weather forecasts are inadequate, as they generally use climatologies for dealing with aerosol extinction. Therefore, meteorological forecasts have to be extended by chemical weather forecasts. The paper aims at quantifying on a global scale the question of whether and where daily mean or hourly forecasts are required, or if persistence is sufficient in some regions. It assesses the performance of recently introduced NWP aerosol schemes by using the ECMWF/Monitoring Atmospheric Composition and Climate (MACC) forecast, which is a preparatory activity for the upcoming European Global Monitoring for Environment and Security (GMES) Atmosphere Service.

Country
Germany
Keywords

concentrating solar technologies, aerosol, solar energy, MACC, solar electricity, Atmosphäre

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%