
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries

handle: 1912/6160
Abstract Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-dimensional structure of atmospheric CO2 for several representative concentration pathways (RCPs 4.5 and 8.5) using the Community Earth System Model–Biogeochemistry (CESM1-BGC). CO2 simulated for the historical period was first compared to surface, aircraft, and column observations. In a second step, the evolution of spatial and temporal gradients during the twenty-first century was examined. The mean annual cycle in atmospheric CO2 was underestimated for the historical period throughout the Northern Hemisphere, suggesting that the growing season net flux in the Community Land Model (the land component of CESM) was too weak. Consistent with weak summer drawdown in Northern Hemisphere high latitudes, simulated CO2 showed correspondingly weak north–south and vertical gradients during the summer. In the simulations of the twenty-first century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Not only did the mean north–south gradient increase due to fossil fuel emissions, but east–west contrasts in CO2 also strengthened because of changing patterns in fossil fuel emissions and terrestrial carbon exchange. In the RCP8.5 simulation, where CO2 increased to 1150 ppm by 2100, the CESM predicted increases in interannual variability in the Northern Hemisphere midlatitudes of up to 60% relative to present variability for time series filtered with a 2–10-yr bandpass. Such an increase in variability may impact detection of changing surface fluxes from atmospheric observations.
- Harvard University United States
- Cornell University United States
- University Corporation for Atmospheric Research United States
- Oak Ridge National Laboratory United States
- Oak Ridge National Laboratory United States
Atmospheric chemistry, 550, Fossil fuel emissions, twentieth century, 551, Community land models, 333, Interannual variability, twenty first century, biogeochemistry, Tracers, computer simulation, ecosystem response, Climate change, spatiotemporal analysis, environmental monitoring, Northern Hemisphere, Northern Hemispheres, Atmospheric carbon dioxide, Fossil fuels, Aircraft observations, Atmospheric observations, Horizontal gradients, carbon dioxide, Carbon cycle, Remote sensing, Three-dimensional structure, climate change, Carbon dioxide, annual variation, In situ atmospheric observations
Atmospheric chemistry, 550, Fossil fuel emissions, twentieth century, 551, Community land models, 333, Interannual variability, twenty first century, biogeochemistry, Tracers, computer simulation, ecosystem response, Climate change, spatiotemporal analysis, environmental monitoring, Northern Hemisphere, Northern Hemispheres, Atmospheric carbon dioxide, Fossil fuels, Aircraft observations, Atmospheric observations, Horizontal gradients, carbon dioxide, Carbon cycle, Remote sensing, Three-dimensional structure, climate change, Carbon dioxide, annual variation, In situ atmospheric observations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
