

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reassessing Model Uncertainty for Regional Projections of Precipitation with an Ensemble of Statistical Downscaling Methods

handle: 10261/170628
This is the second in a pair of papers in which the performance of statistical downscaling methods (SDMs) is critically reassessed with respect to their robust applicability in climate change studies. Whereas the companion paper focused on temperatures, the present manuscript deals with precipitation and considers an ensemble of 12 SDMs from the analog, weather typing, and regression families. First, the performance of the methods is cross-validated considering reanalysis predictors, screening different geographical domains and predictor sets. Standard accuracy and distributional similarity scores and a test for extrapolation capability are considered. The results are highly dependent on the predictor sets, with optimum configurations including information from midtropospheric humidity. Second, a reduced ensemble of well-performing SDMs is applied to four GCMs to properly assess the uncertainty of downscaled future climate projections. The results are compared with an ensemble of regional climate models (RCMs) produced in the ENSEMBLES project. Generally, the mean signal is similar with both methodologies (with the exception of summer, which is drier for the RCMs) but the uncertainty (spread) is larger for the SDM ensemble. Finally, the spread contribution of the GCM- and SDM-derived components is assessed using a simple analysis of variance previously applied to the RCMs, obtaining larger interaction terms. Results show that the main contributor to the spread is the choice of the GCM, although the SDM dominates the uncertainty in some cases during autumn and summer due to the diverging projections from different families.
Take urgent action to combat climate change and its impacts, //metadata.un.org/sdg/13 [http], Climate prediction, Statistical forecasting, Climate change, Statistical techniques, Ensembles
Take urgent action to combat climate change and its impacts, //metadata.un.org/sdg/13 [http], Climate prediction, Statistical forecasting, Climate change, Statistical techniques, Ensembles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 332 download downloads 104 - 332views104downloads
Data source Views Downloads DIGITAL.CSIC 44 53 UCrea 288 51


