Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Effects of Exhaust Back Pressure on Conventional and Low-Temperature Diesel Combustion

Authors: Colin P. Garner; Gordon McTaggart-Cowan; S. Cong;

The Effects of Exhaust Back Pressure on Conventional and Low-Temperature Diesel Combustion

Abstract

Modern diesel engines are seeing increasing system and after-treatment complexity which can lead to significant increases in the exhaust back pressure (EBP). This increases the amount of trapped residuals, raising the charge temperature but reducing the oxygen concentration. In this work, these effects of the EBP on diesel engine performance and emissions under conventional and low-temperature diesel combustion (LTC) regimes were investigated. Increasing the EBP resulted in higher pumping work for both combustion modes. While for conventional diesel combustion the effect of the EBP on combustion and emissions were not significant, for LTC the higher back pressures influenced the combustion and emissions formation processes. At low-load conditions, the increase in the charge temperature advanced combustion; at intermediate-load conditions, the reduction in the oxygen concentration delayed it. Smoke emissions were significantly reduced by a higher back pressure at intermediate-load conditions.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback