
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The thermodynamic implications of electricity end-use for heat and power

Thermodynamic ( energy and exergy) analysis can give rise to differing insights into the relative merits of the various end-uses of electricity for heat and power. The thermodynamic property known as ‘exergy’ reflects the ability to undertake ‘useful work’, but does not represent well heating processes within an energy sector. The end-use of electricity in the home, in the service sector, in industry, and the UK economy more generally has therefore been examined in order to estimate how much is used for heat and power, respectively. The share of electricity employed for heat and power applications has been studied, and alternative scenarios for the future development of the UK energy system were then used to evaluate the variation in heat/power share out to 2050. It was found that the proportion of electricity used to meet these end-use heat demands in the three sectors examined were likely to be quite high (∼50–60%), and that these shares are insensitive to the precise nature of the forward projections (forecasts, transition pathways or scenarios). The results represent a first indicative analysis of possible long-term trends in this heat/power share across the UK economy. Whilst the study is the first to consider this topic within such a timeframe, some of the necessary simplifying assumptions mean there are substantial uncertainties associated with the results. Where end-use heat demands are met by electricity, energy and exergy analysis should be performed in parallel in order to reflect the interrelated constraints imposed by the First and Second Laws of Thermodynamics. An understanding of the actual end-uses for electricity will also enable policy makers to take account of the implications of a greater end-use of electricity in the future.
- ETH Zurich Switzerland
- Bath Spa University United Kingdom
- University of Bath United Kingdom
exergy, services, industry, domestic sector, low carbon futures, power, electricity end-uses, Thermodynamics, energy analysis, UK economy, Thermodynamics; energy analysis; exergy; electricity end-uses; heat; power; domestic sector; services; industry; UK economy; low carbon futures, heat
exergy, services, industry, domestic sector, low carbon futures, power, electricity end-uses, Thermodynamics, energy analysis, UK economy, Thermodynamics; energy analysis; exergy; electricity end-uses; heat; power; domestic sector; services; industry; UK economy; low carbon futures, heat
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
