Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of acid pretreatment and enzymatic hydrolysis on the production of ethanol fuel from waste banana peels

Authors: Chun-Fai Yu; Yiu Fai Tsang; Zhenchi Li; Alicia Kyoungjin An; Jiaxin Guo; Jiaxin Guo; Lingcheng Su;

Optimization of acid pretreatment and enzymatic hydrolysis on the production of ethanol fuel from waste banana peels

Abstract

This study investigated the application of waste banana peels as feedstock for the production of ethanol fuel as a second-generation biofuel. First, acid pretreatment followed by enzymatic hydrolysis converted both the cellulosic and hemicellulosic biomass of the peels into fermentable sugars, which eventually produced ethanol by yeast fermentation. The optimal conditions for the production of ethanol fuel were determined by orthogonal experimental design method. The results showed that 100 g of fresh banana would produce 31.4 g of banana peel which could be turned into 2.8 g dried peel powder. Under optimal conditions of acid pretreatment with 0.2% tartaric acid, enzymatic hydrolysis by cellulase and yeast fermentation, 115 mg of ethanol (95% purity) could be recovered by distillation from the fermentation broth, which was approximately 4% by weight of the dried peel powder. This study concluded that banana fruit, after the removal of peels for consumption or food processing, the discarded peels will no longer pose an organic waste problem to the environment if they could be recollected and converted into value-added products like ethanol fuel. We also demonstrated that tartaric acid, an organic acid used in the acid pretreatment, for the first time to our knowledge, outperformed the traditional sulfuric acid used commonly in other studies.

Country
China (People's Republic of)
Keywords

570, Acid and enzymatic hydrolysis, Banana peel, 620, Ethanol fuel, Biofuels, Cellulosic biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%