
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrothermal gasification and oxidation as effective flameless conversion technologies for organic wastes

Abstract Two major organic reactions in water under high temperature and high pressure, hydrothermal oxidation and gasification, possess great potential towards the thermochemical treatment of high moisture content organic wastes of different varieties and sources. Essentially, hydrothermal oxidation converts organic liquid and/or solid wastes to mainly carbon dioxide and water. Environmentally important and refractory organic pollutants such as polycyclic aromatic compounds, e.g. pyrene, naphthalene, phenanthrene, fluorene and biphenyl, and di-n-butyl phthalate, have been decomposed under oxidative hydrothermal conditions, with conversions of up to 99·9% obtained. Real world environmental wastes and pollutants have also been oxidised. The hydrothermal gasification process offers a new route for 'green' fuel production from biomass and biowastes resulting in a CO2 neutral energy technology. Generally, the main products of hydrothermal gasification are carbon dioxide, carbon monoxide, hydrogen, C1–C4 hydro...
- University of Leeds United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
