Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cheminfor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cheminformatics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cheminformatics
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cheminformatics
Article . 2022
License: CC BY
Data sources: u:cris
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

What makes a reaction network “chemical”?

Authors: Müller, Stefan; Flamm, Christoph; Stadler, Peter F.;

What makes a reaction network “chemical”?

Abstract

Abstract Background Reaction networks (RNs) comprise a set X of species and a set $$\mathscr {R}$$ R of reactions $$Y\rightarrow Y'$$ Y → Y ′ , each converting a multiset of educts $$Y\subseteq X$$ Y ⊆ X into a multiset $$Y'\subseteq X$$ Y ′ ⊆ X of products. RNs are equivalent to directed hypergraphs. However, not all RNs necessarily admit a chemical interpretation. Instead, they might contradict fundamental principles of physics such as the conservation of energy and mass or the reversibility of chemical reactions. The consequences of these necessary conditions for the stoichiometric matrix $$\mathbf {S}\in \mathbb {R}^{X\times \mathscr {R}}$$ S ∈ R X × R have been discussed extensively in the chemical literature. Here, we provide sufficient conditions for $$\mathbf {S}$$ S that guarantee the interpretation of RNs in terms of balanced sum formulas and structural formulas, respectively. Results Chemically plausible RNs allow neither a perpetuum mobile, i.e., a “futile cycle” of reactions with non-vanishing energy production, nor the creation or annihilation of mass. Such RNs are said to be thermodynamically sound and conservative. For finite RNs, both conditions can be expressed equivalently as properties of the stoichiometric matrix $$\mathbf {S}$$ S . The first condition is vacuous for reversible networks, but it excludes irreversible futile cycles and—in a stricter sense—futile cycles that even contain an irreversible reaction. The second condition is equivalent to the existence of a strictly positive reaction invariant. It is also sufficient for the existence of a realization in terms of sum formulas, obeying conservation of “atoms”. In particular, these realizations can be chosen such that any two species have distinct sum formulas, unless $$\mathbf {S}$$ S implies that they are “obligatory isomers”. In terms of structural formulas, every compound is a labeled multigraph, in essence a Lewis formula, and reactions comprise only a rearrangement of bonds such that the total bond order is preserved. In particular, for every conservative RN, there exists a Lewis realization, in which any two compounds are realized by pairwisely distinct multigraphs. Finally, we show that, in general, there are infinitely many realizations for a given conservative RN. Conclusions “Chemical” RNs are directed hypergraphs with a stoichiometric matrix $$\mathbf {S}$$ S whose left kernel contains a strictly positive vector and whose right kernel does not contain a futile cycle involving an irreversible reaction. This simple characterization also provides a concise specification of random models for chemical RNs that additionally constrain $$\mathbf {S}$$ S by rank, sparsity, or distribution of the non-zero entries. Furthermore, it suggests several interesting avenues for future research, in particular, concerning alternative representations of reaction networks and infinite chemical universes.

Country
Austria
Keywords

Molecular Networks (q-bio.MN), SDG 7 – Bezahlbare und saubere Energie, 102031 Theoretische Informatik, Quantitative Biology - Molecular Networks, Sum formula, Multigraph, Metric Geometry (math.MG), T58.5-58.64, Directed hypergraph, Chemistry, Perpetuum mobile, BALANCE, Stoichiometric matrix, Combinatorics (math.CO), Chemical reaction network, Research Article, 101028 Mathematical modelling, FOUNDATIONS, FOS: Physical sciences, ORGANIZATION, Information technology, COMPUTATION, Energy conservation, Mass conservation, 102009 Computer simulation, Mathematics - Metric Geometry, Physics - Chemical Physics, THERMODYNAMICS, FOS: Mathematics, Mathematics - Combinatorics, SDG 7 - Affordable and Clean Energy, SMALL-WORLD, QD1-999, Chemical Physics (physics.chem-ph), COMPLEXITY, REACTION SYSTEMS, SEQUENCES, Lewis formula, Null spaces, DEFINITION, Reaction invariants, Futile cycle, FOS: Biological sciences, 102031 Theoretical computer science, 101028 Mathematische Modellierung, 102009 Computersimulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold