Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geothermal Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geothermal Energy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geothermal Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geothermal Energy
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Economic and fault stability analysis of geothermal field development in direct-use hydrothermal reservoirs

Authors: Caroline Zaal; Alexandros Daniilidis; Femke C. Vossepoel;

Economic and fault stability analysis of geothermal field development in direct-use hydrothermal reservoirs

Abstract

AbstractThe installed capacity of geothermal systems for direct use of heat is increasing worldwide. As their number and density is increasing, the their interaction with subsurface faults becomes more important as they could lead to safety risks from induced seismicity. Assessment and management of such risks is essential for the further development and extension of geothermal energy for heating. At the same time, the economic output of geothermal systems can be marginal and is hence often supported by subsidy schemes. A combined assessment of fault stability and economic output could help operators to balance economic and safety aspects, but this is currently not common practice. In this study we present a methodology to assess field development plans based on fault stability and Net Present Value (NPV) using reservoir simulations of a fluvial, heterogeneous sandstone representative of the majority of direct-use Dutch geothermal systems. We find that the highest friction coefficient leading to exceedance of the Mohr–Coulomb failure criteria in this sandstone is 0.17; such values could be encountered in clay-rich fault gouges. Similar or lower fault permeability compared to the reservoir results in no changes and an increase respectively of both NPV and fault stability with larger Fault-to-Well Distance (FWD). Fault permeability higher than the reservoir permeability results in a minor increase in NPV with smaller FWD. Our results demonstrate that a combined analysis of thermal, hydraulic, mechanical and economic assessment supports a responsible and viable development of geothermal resources at a large scale. The importance of a high spatial density of supporting stress data will be essential for a better understanding and quantification of economic and fault stability effects of geothermal operations.

Country
Netherlands
Related Organizations
Keywords

QE1-996.5, 550, TJ807-830, Economic, Geology, Direct-use geothermal, Renewable energy sources, NPV, Fault stability, Field development

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 12
    download downloads 14
  • 12
    views
    14
    downloads
    Data sourceViewsDownloads
    TU Delft Repository1214
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
12
Top 10%
Average
Top 10%
12
14
gold