
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Gravity monitoring of C O2 movement during sequestration: Model studies

doi: 10.1190/1.2985823
Sequestration/enhanced oil recovery (EOR) petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and carbon dioxide, or [Formula: see text]), whereas brine formations usually have much thicker injection intervals and only two components (brine and [Formula: see text]). Coal formations undergoing methane extraction tend to be thin [Formula: see text] but shallow compared to either EOR or brine formations. Injecting [Formula: see text] into an oil reservoir decreases the bulk density in the reservoir. The spatial pattern of the change in the vertical component of gravity [Formula: see text] is correlated directly with the net change in reservoir density. Furthermore, time-lapse changes in the borehole [Formula: see text] clearly identify the vertical section of the reservoir where fluid saturations are changing. The [Formula: see text]-brine front, on the order of [Formula: see text] within a [Formula: see text]-thick brine formation at [Formula: see text] depth with 30% [Formula: see text] and 70% brine saturations, respectively, produced a [Formula: see text] surface gravity anomaly. Such an anomaly would be detectable in the field. The amount of [Formula: see text] in a coal-bed methane scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial-size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrate that the general position of density changes caused by [Formula: see text] can be recovered but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.
- University of North Texas United States
- Lawrence Berkeley National Laboratory United States
- University of North Texas United States
- Lawrence Berkeley National Laboratory United States
- Chevron (Netherlands) Netherlands
Coal Deposits, Boreholes, Monitoring, Brines, 550, 330, Bulk Density, 58, 54, Hydrocarbons, Petroleum, Coal, Spatial Resolution, Oil Fields, Methane, Simulation
Coal Deposits, Boreholes, Monitoring, Brines, 550, 330, Bulk Density, 58, 54, Hydrocarbons, Petroleum, Coal, Spatial Resolution, Oil Fields, Methane, Simulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).73 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
