
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Coordinate Expression of Matrix Metalloproteinase Family Members in the Uterus of Normal, Matrilysin-Deficient, and Stromelysin-1-Deficient Mice*

pmid: 9348221
Coordinate Expression of Matrix Metalloproteinase Family Members in the Uterus of Normal, Matrilysin-Deficient, and Stromelysin-1-Deficient Mice*
The expression patterns of matrix metalloproteinase (MMP) family members during the murine estrous cycle and postpartum uterine involution were analyzed, and the consequence of removing specific MMPs during uterine functions was determined using mice deficient in either matrilysin (MAT) or stromelysin-1 (STR-1). In wild-type animals, MAT, STR-1, STR-2, STR-3, and gelatinase A were consistently expressed during the most active phases of the estrous cycle, estrus and proestrus. The messenger RNA for these MMPs as well as collagenase-3 and the tissue inhibitors of metalloproteinases were also expressed during uterine involution, as determined by Northern analysis and in situ hybridization. Notably, MAT, STR-2, and collagenase-3 messenger RNA levels were elevated at early times of involution and rapidly decreased with time, whereas the transcripts for other MMPs remained elevated throughout the involution process. Involution proceeded normally in mice lacking MAT or STR-1; however, the expression of STR-1 and STR-2 was dramatically up-regulated in MAT nullizygous mice, and the expression of MAT and STR-2 was moderately up-regulated in STR-1-deficient animals. We conclude that the concerted action of several MMPs is likely to play an important role in the remodeling of the postpartum uterus, and that mechanisms that compensate for the loss of a specific MMP during this process appear to exist.
- Merck & Co. United States
- Merck & Co. United States
- Vanderbilt University United States
Mice, Knockout, Postpartum Period, Uterus, Metalloendopeptidases, Extracellular Matrix, Mice, Estrus, Reference Values, Matrix Metalloproteinase 7, Animals, Female, Matrix Metalloproteinase 3, RNA, Messenger
Mice, Knockout, Postpartum Period, Uterus, Metalloendopeptidases, Extracellular Matrix, Mice, Estrus, Reference Values, Matrix Metalloproteinase 7, Animals, Female, Matrix Metalloproteinase 3, RNA, Messenger
1 Research products, page 1 of 1
- 2004IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).107 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
