Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Radiation...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Radiation Research
Article . 2002 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Radiation Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IRDB
Conference object . 2014
Data sources: IRDB
IRDB
Article . 2014
Data sources: IRDB
versions View all 4 versions
addClaim

Analysis of Unrejoined Chromosomal Breakage in Human Fibroblast Cells Exposed to Low- and High-LET Radiation

Authors: Tetsuya Kawata; Francis A. Cucinotta; Yoshiya Furusawa; Kerry George; Honglu Wu;

Analysis of Unrejoined Chromosomal Breakage in Human Fibroblast Cells Exposed to Low- and High-LET Radiation

Abstract

Reported studies of DNA breakage induced by radiation of various qualities have generally shown a higher fraction of unrejoined residual breaks after high-LET exposure. This observation is supported by the argument that high-LET radiation induced DNA breaks that are more complex in nature and, thus, less likely to be repaired. In most cases the doses used in these studies were very high. We have studied unrejoined chromosome breaks by analyzing chromosome aberrations using a fluorescence in situ hybridization (FISH) technique with a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosomes. Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 and 500 MeV/nucleon, and were allowed to repair at 37 degrees C for 24 hours after exposure. A chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and the ratio of unrejoined to misrejoined chromosome breaks increased steadily with LET up a peak value at 440 keV/microm.

Keywords

Humans, Chromosome Breakage, Dose-Response Relationship, Radiation, Linear Energy Transfer, Fibroblasts, Chromosomes, Cell Line

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
gold