
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessing the Impact of Wind Conditions on Urban Heat Islands in Large Australian Cities

handle: 1959.3/464726
Urban regions are well known to be warmer than the outlying surrounding regions: this phenomenon is termed an urban Heat Island (UHI). Depending upon its severity, an UHI can influence human health, the condition of urban vegetation, as well as air and water quality leading to a general decline in the living conditions of the affected urban environments and residents. Some studies have shown that prevailing weather conditions, like wind patterns, can influence UHI magnitudes. These studies suggest that wind speeds may be inversely related to UHI magnitude. However, long-term and high frequency weather and temperature measurements are exceedingly rare, so the exact nature of the relationship between wind speeds and directions as well as UHI magnitudes remain unknown. In order to address this problem, this study investigates howUHImagnitudes in five Australian cities affect wind speed and wind direction. The results of this study revealed that urban–non-urban temperature differences are most pronounced under calm weather conditions. The UHI intensity weakened as wind velocity increased: strong significant negative correlations were found between the mean UHI intensity and mean wind speed magnitudes. The results show that the greatest UHI intensities are recorded when wind is weak (less than 2 ms-1), while the lowest magnitudes are found when wind speeds exceed 6 ms-1. Further, the results show that the critical wind speed value, above which the strength of the UHI is considerably minimized, is around 4-5 ms-1. In addition, the study shows that wind direction in each city is a critical driver factor that determines the intensity of the UHI effect. When winds originate from dry environments, they favour high UHI intensities at all wind speeds, while the winds from the ocean side of coastal cities tend to cool urban regions, reducing UHI intensities or even promoting the urban cool island formation.
- Adam Mickiewicz University Poland
- Al-Mustansiriya University Iraq
- RMIT University Australia
- Swinburne University of Technology Australia
- RMIT University Australia
heat islands, 551, Environmental technology. Sanitary engineering, Environmental sciences, climate change, seasonal and diurnal uhi, GE1-350, TD1-1066, wind speed and wind direction
heat islands, 551, Environmental technology. Sanitary engineering, Environmental sciences, climate change, seasonal and diurnal uhi, GE1-350, TD1-1066, wind speed and wind direction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
