
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impacts of Land Cover Data Selection and Trait Parameterisation on Dynamic Modelling of Species’ Range Expansion

Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina) and one generalist (Issoria lathonia). Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity), with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning.
- University of Zurich Switzerland
- Finnish Environmental Institute Finland
- University of Aberdeen United Kingdom
- Centro de Recursos Naturais e Ambiente Portugal
- Centro de Recursos Naturais e Ambiente Portugal
Conservation of Natural Resources, QH301 Biology, Science, Climate Change, Population Dynamics, 610, 551, Models, Biological, QH301, SDG 13 - Climate Action, Animals, Ecosystem, Finland, Population Density, Q, R, Grassland, Medicine, ta1181, Animal Migration, Butterflies, Research Article, Environmental Monitoring
Conservation of Natural Resources, QH301 Biology, Science, Climate Change, Population Dynamics, 610, 551, Models, Biological, QH301, SDG 13 - Climate Action, Animals, Ecosystem, Finland, Population Density, Q, R, Grassland, Medicine, ta1181, Animal Migration, Butterflies, Research Article, Environmental Monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
