

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility

In Singapore, the frequency and magnitude of dengue epidemics have increased significantly over the past 40 years. It is important to understand the main drivers for the rapid increase in dengue incidence. We studied the relative contributions of putative drivers for the rise of dengue in Singapore: population growth, climate parameters and international air passenger arrivals from dengue endemic countries, for the time period of 1974 until 2011. We used multivariable Poisson regression models with the following predictors: Annual Population Size; Aedes Premises Index; Mean Annual Temperature; Minimum and Maximum Temperature Recorded in each year; Annual Precipitation and Annual Number of Air Passengers arriving from dengue-endemic South-East Asia to Singapore. The relative risk (RR) of the increase in dengue incidence due to population growth over the study period was 42.7, while the climate variables (mean and minimum temperature) together explained an RR of 7.1 (RR defined as risk at the end of the time period relative to the beginning and goodness of fit associated with the model leading to these estimates assessed by pseudo-R2 equal to 0.83). Estimating the extent of the contribution of these individual factors on the increasing dengue incidence, we found that population growth contributed to 86% while the residual 14% was explained by increase in temperature. We found no correlation with incoming air passenger arrivals into Singapore from dengue endemic countries. Our findings have significant implications for predicting future trends of the dengue epidemics given the rapid urbanization with population growth in many dengue endemic countries. It is time for policy-makers and the scientific community alike to pay more attention to the negative impact of urbanization and urban climate on diseases such as dengue.
- Universidade de São Paulo Brazil
- Middlesex University United Kingdom
- Nanyang Technological University Singapore
- Oswaldo Cruz Foundation Brazil
- Georgia State University United States
Asia, Rain, Science, Climate, Climate Change, Mosquitoes, Dengue virus, 333, Dengue, Aedes, Infectious disease control, Population growth, Animals, Humans, Epidemics, Population Growth, Singapore, Incidence, Q, R, Temperature, Models, Theoretical, Population size, Medicine
Asia, Rain, Science, Climate, Climate Change, Mosquitoes, Dengue virus, 333, Dengue, Aedes, Infectious disease control, Population growth, Animals, Humans, Epidemics, Population Growth, Singapore, Incidence, Q, R, Temperature, Models, Theoretical, Population size, Medicine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).123 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% download downloads 51 - 51downloads
Data source Views Downloads LSHTM Research Online 0 51

