Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2019
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Benthic community succession on artificial and natural coral reefs in the northern Gulf of Aqaba, Red Sea

Authors: Emily Higgins; Robert E. Scheibling; Kelsey M. Desilets; Anna Metaxas;

Benthic community succession on artificial and natural coral reefs in the northern Gulf of Aqaba, Red Sea

Abstract

Evaluating the efficacy of artificial structures in enhancing or sustaining biodiversity on tropical coral reefs is key to assessing their role in reef conservation or management. Here, we compare spatial and temporal patterns of colonization and succession of the benthic assemblage on settlement collectors (ceramic tiles) in a 13-mo mensurative experiment on a suspended artificial reef, a seafloor artificial reef, and two nearby natural reefs at Eilat, Gulf of Aqaba. We also conducted a concurrent 7-mo manipulative experiment on the suspended reef and one of the natural reefs, and monitored fish feeding behaviour on experimental collectors, to examine effects of large mobile consumers on these patterns. In both experiments, taxonomic composition as percent planar cover for the whole community or biomass for the invertebrate component differed between collector topsides, dominated by a filamentous algal matrix, and shaded undersides with a profuse assemblage of suspension- or filter-feeding invertebrates. In the mensurative experiment, we found differences in final community and invertebrate composition between sites, which clustered according to reef type (artificial vs. natural) for collector undersides. Invertebrate biomass was greater at both artificial reefs than at one (undersides) or both (topsides) natural reefs. In the manipulative experiment, we found similar differences in composition between sites/reef types as well as between treatments (exclusion vs. control), and the invertebrate biomass was greater on the artificial reef. Invertebrate biomass was greater in the exclusion treatment than the control on collector undersides, suggesting mobile consumers can affect community composition and abundance. Predominant fish species observed interacting with collectors differed between artificial and natural reefs, likely contributing to differences in patterns of colonization and succession between sites and reef types. Our findings suggest artificial reefs have the potential to enhance cover and biomass of certain reef-associated assemblages, particularly those occupying sheltered microhabitats.

Related Organizations
Keywords

Coral Reefs, Science, Q, R, Fishes, Biodiversity, Anthozoa, Invertebrates, Spatio-Temporal Analysis, Medicine, Animals, Biomass, Indian Ocean, Environmental Restoration and Remediation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
gold
Related to Research communities
Energy Research