
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Light harvester band gap engineering in excitonic solar cells: A case study on semiconducting quantum dots sensitized rainbow solar cells

handle: 20.500.14243/296733 , 10278/3711958 , 11379/429507
Abstract A systematic study on the fabrication of quantum dots sensitized solar cells (QDSSCs) exploiting hybrid networks of semiconducting light harvesters is presented, which shows how the engineering of band gaps of the device components by a very simple technique allows improving the solar energy conversion performances. Panchromatic devices are fabricated and tested, and correspondent functional parameters analyzed in order to highlight both advantages and drawbacks of the most common (CdS, CdSe, PbS) quantum dots applied for light collection in QDSSCs. Judicious engineering of the light harvester layer is demonstrated as a simple and powerful strategy for boosting device performances, through the management of light collection in a rather broad range of solar spectrum and photogenerated charges injection and collection.
- National Research Council Italy
- Ca Foscari University of Venice Italy
- University of Brescia Italy
energy conversion, NMS-IX, semiconductors, Electrodes; Energy conversion; NMS-IX; Semiconductors;, electrodes
energy conversion, NMS-IX, semiconductors, Electrodes; Energy conversion; NMS-IX; Semiconductors;, electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
