Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brazilian Archives o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brazilian Archives of Biology and Technology
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Protective Effect of Silica on Adaptation of saccharomyces cerevisiae, Ethanol Red® for Very High Gravity Fermentation

Authors: Matheus Ribeiro Barbosa Oliveira; Ana Paula Maria da Silva; Tamires Marques Faria; Luiz Carlos Basso; Antonio Sampaio Baptista;

Protective Effect of Silica on Adaptation of saccharomyces cerevisiae, Ethanol Red® for Very High Gravity Fermentation

Abstract

Abstract The Very High Gravity (VHG) fermentation is a technology that can lead to a reduction in waste generation, a reduction in energy consumption and GHG emissions and several technical, economic, and environmental advantages. Having, as a limiting factor, yeast tolerance to the most diverse stressors in the fermentation medium. To overcome this limitation, the aim of the work was to verify the potential protective effect of silica (+A) on Saccharomyces cerevisiae (Ethanol Red®) submitted to VHG fermentation. Initially, an adaptive test to VHG fermentation was carried out, with 5 cell recycles in musts from sugar cane syrup. Each recycle was subjected to the treatments, in quadruplicate: T1C (control) - Wort without silica supplementation; T2S100- Wort with supplementation of 100 mg L-1 of silica and T3S300- Wort with supplementation of 300 mg L -1 of silica. As a result, the T3S300 treatment in the adaptive test, showed viability of 77.5 to 81.55%; biomass production from 8.1 to 10.0 g L-1; yield from 90.0 to 95.3% and productivity from 7.3 to 10.9 mL L-1h-1. In conclusion, the treatment of the wort with silica (+A) (100 and 300 mg L-1) has an effect protector on yeast and may present positive responses in VHG fermentations.

Keywords

Ethanol, Supplementation, Yeast strain., Cell recycling, Tolerance, TP248.13-248.65, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities
Energy Research