
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wort disinfection treatment with electron beam for bioethanol production

ABSTRACT Microbial contamination of the wort during the fermentation process causes significant losses in ethanol production worldwide and creates a dependence of the industry on chemicals and antibiotics to control contamination. Therefore, this study used electron beam (e-beam) to disinfect wort from sugarcane (Saccharum officinarum L.) molasses and investigate the bioethanol fermentation. Four treatments (T0 – T3) were carried out using ionizing doses of radiation through the electron accelerator: 0 (control), 10, 20, and 40 kGy. Total mesophiles, total bacteria, sucrose, glucose, fructose, phenolics, flavonoids, hydroxymethylfurfural (5-HMF), and Furfural were measured. An alcoholic fermentation assay was performed after the irradiation process. The irradiated treatments showed no inversion of sugars and formation of the inhibitory by-products flavonoids, furfural and 5-HMF, except for the phenolic compounds. The lower dose tested (10 kGy) reduced more than 99.9 % of the total mesophiles and more than 99.99 % of the total bacteria in the substrate. In the fermentation, the irradiated worts presented similar (p > 0.05) yields (92, 93, and 94 %) and ethanol productivity levels (0.89, 0.88, and 0.87 g L–1 h–1, for T1, T2, and T3 respectively). However, all treatments presented higher yields and productivity (p < 0.05) when compared to the control (88 % and 0.85 g L–1 h–1), highlighting the possible use of e-beam in wort fermentation at a lower dose (10 kGy). This allows reduction in losses caused by microbial contamination, besides increasing fermentation yield and productivity with lower energy consumption.
- Universidade de São Paulo Brazil
alcoholic fermentation, Agriculture (General), biofuel, microbial contamination, electron accelerator, reduction of contamination, S1-972
alcoholic fermentation, Agriculture (General), biofuel, microbial contamination, electron accelerator, reduction of contamination, S1-972
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
