
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Soil-atmosphere greenhouse gases (CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O) exchange in evergreen oak woodland in southern Portugal

handle: 11591/191014
A 10-20% decrease in annual precipitation is predicted in the Mediterranean basin, and in particular to the Iberian Peninsula, with foreseen effects on the exchange of soil-atmosphere greenhouse gases (GHGs; CO2, CH4, and N2O). To simulate this scenario, we setup an experimental design in the particularly dry period of 2008-2009 using rainfall exclusion and irrigation, to obtain plots receiving 110% (538 mm), 100% (493 mm) and 74% (365 mm) of the natural precipitation. Soil CO2 fluxes showed a strong increase from summer to autumn as a consequence of increasing soil heterotrophic respiration that resulted from rewetting. Fluxes of N2O were negligible. According to our data, soil was a permanent CH4 sink independent of the soil water content (in the range between 6-26% WFPS - water-filled pore space) and of soil temperature (in the range of 7-28°C), supporting the concept that seasonally dry ecosystems (Mediterranean) may represent a significant sink of atmospheric CH4. The study provides evidence that the 26% decrease or 10% increase in the ambient rainfall from annual precipitation of ca 500 mm did not significantly affect soil functionality and had a limited impact on soil-atmosphere net GHGs exchange in evergreen oak woodlands in southern Portugal.
- Universidade de Lisboa Portugal
- "UNIVERSIDADE DE LISBOA Portugal
- University of Lisbon Portugal
- Universidade de Lisboa Portugal
- University of Campania "Luigi Vanvitelli" Italy
climate change, mediterranean, Plant culture, drought, precipitation, Climate change; Drought; Mediterranean; Precipitation;, SB1-1110
climate change, mediterranean, Plant culture, drought, precipitation, Climate change; Drought; Mediterranean; Precipitation;, SB1-1110
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
