Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://biotechnologyforbiofue...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://biotechnologyforbiofue...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biotechnology for Biofuels
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biotechnology for Biofuels
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biotechnology for Biofuels
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Single-Step Ethanol Production from Raw Cassava Starch Using a Combination of Raw Starch Hydrolysis and Fermentation, Scale-Up from 5-L Laboratory and 200-L Pilot Plant to 3,000-L Industrial Fermenters

Authors: Morakot Krajang; Kwanruthai Malairuang; Jatuporn Sukna; Krongchan Rattanapradit; Saethawat Chamsart;

Single-Step Ethanol Production from Raw Cassava Starch Using a Combination of Raw Starch Hydrolysis and Fermentation, Scale-Up from 5-L Laboratory and 200-L Pilot Plant to 3,000-L Industrial Fermenters

Abstract

Abstract Background: A single-step ethanol production is the combination of raw cassava starch hydrolysis and fermentation. For the development of raw starch consolidated bioprocessing (CBP) technologies, this research work was to investigate the optimum conditions and technical procedures for the production of ethanol from raw cassava starch in a single step. This resulted high yields and productivities of all the experiments from the laboratory, the pilot, through the industrial scales. The yields of ethanol concentration are comparable with those in the commercial industries that use molasses and hydrolyzed starch as the raw materials. Results: Before single-step ethanol production, the studies of raw cassava starch hydrolysis by a granular starch hydrolyzing enzyme, StargenTM002, were carefully conducted. It successfully converted 80.19% (w/v) of raw cassava starch to glucose at a concentration of 176.41 g/L with a productivity of 2.45 g/L/h when the raw starch was pretreated at 60 °C for 1 h with 0.10% (v/w dry starch basis) of Distillase ASP before hydrolysis. A single-step ethanol production at 34 °C in a 5-L fermenter showed that S. cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, p of 81.86 g/L (10.43% v/v) with a yield coefficient, Y p/s of 0.41 g/g, a productivity or production rate, r p of 1.14 g/L/h with an efficiency, Ef of 71.44%. The scale-up experiments of the single-step ethanol production using this method, from the 5-L fermenter to the 200-L fermenter and further to the 3,000-L industrial fermenter were successfully achieved with essentially good results. The p, Y p/s , r p , and Ef values of the 200-L scale were 80.85 g/L (10.23% v/v), 0.41 g/g, 1.12 g/L/h and 72.47% , respectively ; of the 3,000-L scale were 70.74 g/L (9.01% v/v), 0.34 g/g, 0.98 g/L/h and 59.82% , respectively. Because of using raw starch, the major by-products of all the three scales were very low; glycerol lactic acid and acetic acid, in ranges of 0.94-1.14%, 0.046-0.052%, 0-0.059% (w/v), respectively, where are less than those values in the industries. Conclusions: This single-step ethanol production using a combination of raw cassava starch hydrolysis and fermentation of the three fermentation scales here is practicable and feasible for the scale-up of industrial production of ethanol from raw starch.

Related Organizations
Keywords

Raw cassava starch, Hydrolysis, Research, Pilot scale, Bioethanol, Fuel, TP315-360, Fermentation, Single-step ethanol production, TP248.13-248.65, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%