Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heating with Steam Methane Reformed Hydrogen

Authors: Mark Barrett; Tiziano Gallo Cassarino;

Heating with Steam Methane Reformed Hydrogen

Abstract

Abstract Hydrogen produced from natural gas with steam methane reforming coupled with carbon capture and sequestration (SMRCCS) is proposed as fuel for consumer heating and cooking systems. This paper presents estimates of the energy losses and methane and carbon dioxide emission and global warming across the whole gas to hydrogen heat supply chain – from production to consumer. Processed natural gas is typically about 95% methane which is a potent greenhouse gas with a global warming potential (GWP) such that, with 20 year and 100 year GWP horizons, about 4% and 8% leakage respectively will cause as much global warming as the carbon dioxide formed when burning the methane. Data on gas emissions and SMRCCS costs and performance are sparse and wide ranging and this presents a major problem in accurately appraising the possible role of hydrogen from methane. The survey indicates emissions between 50 and 200 gCO2eq per unit of heat (kWhth) for SMRCCS H2 heat depending on leakage and GWP time horizon assumed. The second part of the paper reviews gas supply pricing and security and presents a cost minimised configuration of a SMRCCS hydrogen heating system derived with a simple model. Uncertainty in SMRCCS greenhouse gas emissions coupled with a net zero emission target and the long term issue of the physical and economic security of natural gas supply, bear on the potential advantages of SMRCCS as compared to other options, such as heating with renewable electricity driving consumer or district heating heat pumps.

Country
United Kingdom
Related Organizations
Keywords

660, methane emissions, Energy Engineering, carbon capture and storage, gas price, steam methane reforming, hydrogen

Powered by OpenAIRE graph
Found an issue? Give us feedback