Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Industrial Ecology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
SSRN Electronic Journal
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Irrigation Technology and Water Rebound in China's Agricultural Sector

Authors: Lin Fang; Fengping Wu; Yantuan Yu; Lin Zhang;

Irrigation Technology and Water Rebound in China's Agricultural Sector

Abstract

AbstractBy using the data of 30 provinces from 1998 to 2016 in China, this paper estimates the water rebound effect in the agricultural crop farming by combining Slacks‐based Measure (SBM‐based) of Malmquist Index and Logarithmic Mean Divisia Index (LMDI) method. We find that the average water rebound effect is 70.3%, implying that over two‐thirds of the water saving from irrigation technology improvement is offset by higher water consumption. We find evidence on the regional heterogeneity in terms of the magnitude of rebound: Southwest is the highest, whereas Northwest is the lowest. The heterogeneous rebound effect across regions is mainly due to the difference in water endowment and irrigation land availability. Our results indicate that irrigation technology improvement is not necessarily sufficient for achieving agricultural water conservation. In particular, the difference in natural geography conditions across regions needs to be considered in designing water conservation policies at a sub‐regional level.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback