
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Vegetation Impact on Atmospheric Moisture Transport Under Increasing Land-Ocean Temperature Contrasts

Destabilization of the water cycle threatens human lives and livelihoods. Meanwhile our understanding of whether and how changes in vegetation cover could trigger abrupt transitions in moisture regimes remains incomplete. This challenge calls for better evidence as well as for the theoretical concepts to describe it. Here we briefly summarise the theoretical questions surrounding the role of vegetation cover in the dynamics of a moist atmosphere. We discuss the previously unrecognized sensitivity of local wind power to condensation rate as revealed by our analysis of the continuity equation for a gas mixture. Using the framework of condensation-induced atmospheric dynamics, we then show that with the temperature contrast between land and ocean increasing up to a critical threshold, ocean-to-land moisture transport reaches a tipping point where it can stop or even reverse. Land-ocean temperature contrasts are affected by both global and regional processes, in particular, by the surface fluxes of sensible and latent heat that are strongly influenced by vegetation. Our results clarify how a disturbance of natural vegetation cover, e.g., by deforestation, can disrupt large-scale atmospheric circulation and moisture transport. In view of the increasing pressure on natural ecosystems, successful strategies of mitigating climate change require taking into account the impact of vegetation on moist atmospheric dynamics. Our analysis provides a theoretical framework to assess this impact. The available data for Eurasia indicate that the observed climatological land-ocean temperature contrasts are close to the threshold. This can explain the increasing fluctuations in the continental water cycle including droughts and floods and signifies a yet greater potential importance for large-scale forest conservation.
25 pages, 5 figures, and 1 table
- CGIAR France
- Wageningen University & Research Netherlands
- University of California, Riverside United States
- Petersburg Nuclear Physics Institute Russian Federation
- Center for International Forestry Research Indonesia
heatwaves, Science (General), FOS: Physical sciences, drought, Q1-390, Heatwaves, vegetation, H1-99, Drought, Evapotranspiration, Vegetation cover, Social sciences (General), Physics - Atmospheric and Oceanic Physics, Atmospheric and Oceanic Physics (physics.ao-ph), Wind power, Research Article, ddc: ddc:
heatwaves, Science (General), FOS: Physical sciences, drought, Q1-390, Heatwaves, vegetation, H1-99, Drought, Evapotranspiration, Vegetation cover, Social sciences (General), Physics - Atmospheric and Oceanic Physics, Atmospheric and Oceanic Physics (physics.ao-ph), Wind power, Research Article, ddc: ddc:
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
