Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environment Internat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environment International
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environment International
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2023 . Peer-reviewed
Data sources: Crossref
MPG.PuRe
Article . 2023
Data sources: MPG.PuRe
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Air Pollution and Child Health Impacts of Decarbonization in 16 Global Cities: Modelling Study

Authors: Milner, James; Hughes, Robert; Chowdhury, Sourangsu; Picetti, Roberto; Ghosh, Rakesh; Yeung, Shunmay; Lelieveld, Jos; +2 Authors

Air Pollution and Child Health Impacts of Decarbonization in 16 Global Cities: Modelling Study

Abstract

Most research on the air pollution-related health effects of decarbonization has focused on adults. We assess the potential health benefits that could be achieved in children and young people in a global sample of 16 cities through global decarbonization actions. We modelled annual average concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at 1x1 km resolution in the cities using a general circulation/atmospheric chemistry model assuming removal of all global combustion-related emissions from land transport, industries, domestic energy use and power generation. We modelled the impact on childhood asthma incidence and adverse birth outcomes (low birthweight, pre-term births) using published exposure-response relationships. Removal of combustion emissions was estimated to decrease annual average PM2.5 by between 2.9 μg/m3 (8.4%) in Freetown and 45.4 μg/m3 (63.7%) in Dhaka. For NO2, the range was from 0.3 ppb (7.9%) in Freetown to 18.8 ppb (92.3%) in Mexico City. Estimated reductions in asthma incidence ranged from close to zero in Freetown, Tamale and Harare to 149 cases per 100,000 population in Los Angeles. For pre-term birth, modelled impacts ranged from a reduction of 135 per 100,000 births in Dar es Salaam to 2,818 per 100,000 births in Bhubaneswar and, for low birthweight, from 75 per 100,000 births in Dar es Salaam to 2,951 per 100,000 births in Dhaka. The large variations chiefly reflect differences in the magnitudes of air pollution reductions and estimated underlying disease rates. Across the 16 cities, the reduction in childhood asthma incidence represents more than one-fifth of the current burden, and an almost 10% reduction in pre-term and low birthweight births. Decarbonization actions that remove combustion-related emissions contributing to ambient PM2.5 and NO2 would likely lead to substantial but geographically-varied reductions in childhood asthma and adverse birth outcomes, though there are uncertainties in causality and the precision of estimates.

Country
Norway
Keywords

Adult, Zimbabwe, Low birthweight, Adolescent, Nitrogen Dioxide, Air pollution, Tanzania, Air Pollution, Pre-term birth, Humans, Birth Weight, GE1-350, Cities, Child, Child health, Air Pollutants, Bangladesh, Child Health, Environmental Exposure, Decarbonization, Asthma, Environmental sciences, Particulate Matter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Related to Research communities
Energy Research