Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Water and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water and Climate Change
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water and Climate Change
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamical versus statistical downscaling for the generation of regional climate change scenarios at a Western Mediterranean basin: the Jucar river district

Authors: Vicente Chirivella; Miguel A. Pérez-Martín; José E. Capilla;

Dynamical versus statistical downscaling for the generation of regional climate change scenarios at a Western Mediterranean basin: the Jucar river district

Abstract

[EN] Current climate change (CC) predictions for the Western Mediterranean show a significant increase in temperature, and a decrease in precipitations, with great variability depending on general circulation models (GCM) and downscaling approaches. This paper analyses how dynamic downscaling improves statistically based CC scenarios. The study area was the Jucar River Basin (JB), with results from ECHAM5 GCM, and a close time frame of 2010-2040 appropriated for decision-making. The dynamic downscaling was performed with the regional climate model (RCM) RegCM3. It was applied to a coarse grid over the Iberian Peninsula, and then to a finer grid over the JB. The RCM was customized to reproduce Western Mediterranean climatic conditions using the convective precipitation scheme of Grell; the non-convective scheme was customized by changing the default RHmin and C-ptt parameters to reproduce precipitations originated by larger-scale atmospheric circulations. The RCM results, compared to current official Spanish Agency of Meteorology (AEMET) scenarios-statistically based-reproduce much better historical data (used to verify scenarios generation). They foresee a 21.0% precipitation decrease for 2010-2040, compared to previous ECHAM4 predictions with statistical downscaling (-6.64%). The most significant reductions are in February, September and October. Average estimated temperature increase is 0.75 degrees C, with high increments in July (+3.05 degrees C) and August (+1.89 degrees C).

Related Organizations
Keywords

Convective precipitation, Western Mediterranean, INGENIERIA HIDRAULICA, FISICA APLICADA, Non-convective precipitation, Climate change, Downscaling, Jucar River Basin, TECNOLOGIA DEL MEDIO AMBIENTE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 47
    download downloads 107
  • 47
    views
    107
    downloads
    Data sourceViewsDownloads
    RiuNet47107
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Top 10%
Average
Average
47
107
Green
gold