Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Science & Technology
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of combined membrane biological reactor and electro-oxidation processes for the treatment of landfill leachates

Authors: Firas Fki; Sami Sayadi; Fathi Aloui; Slim Loukil;

Application of combined membrane biological reactor and electro-oxidation processes for the treatment of landfill leachates

Abstract

Landfill leachate (LFL) is a very complex wastewater that poses considerable hazards to local communities and the environment. With this concern in mind, the present study was undertaken to investigate the performance of an aerobic membrane bioreactor treating raw LFL from Djebel Chekir (Tunisia) discharge. The LFL samples collected from this site were found to be highly loaded with organic matter, ammonia, salts, greases, phenols and hydrocarbons. Important removals of chemical oxygen demand (COD) and NH4+-N were attained after 44 days of treatment at optimum conditions for the membrane and with organic loading rates (OLR) of 1.9 and 2.7 grams COD per litter and day. This treatment allowed for an important detoxification of the landfill leachates and a significant elimination of the microorganisms. Electrochemical oxidation using Pi/Ti was applied as a post-treatment and after the biological process in order to reduce the residual ammonia and COD. At a pH value of 9, current density of 4 A dm−2 and electrolysis time of 60 minutes, COD and ammonia nitrogen were reduced to 1,000 mg L−1 and 27 mg L−1, respectively. COD and NH4+-N removals were accompanied by significant detoxification.

Keywords

Bacteria, Acclimatization, Membranes, Artificial, Hydrogen-Ion Concentration, Waste Disposal, Fluid, Water Purification, Oxygen, Quaternary Ammonium Compounds, Biodegradation, Environmental, Bioreactors, Electrochemistry, Pressure, Biomass, Oxidation-Reduction, Filtration, Water Pollutants, Chemical

Powered by OpenAIRE graph
Found an issue? Give us feedback