Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Science & Technology
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anode and cathode materials characterization for a microbial fuel cell in half cell configuration

Authors: Ludo Diels; Gilbert Van Bogaert; Deepak Pant; Christof Porto-Carrero; Karolien Vanbroekhoven;

Anode and cathode materials characterization for a microbial fuel cell in half cell configuration

Abstract

Microbial fuel cells (MFCs) are novel bioelectrochemical devices for spontaneous conversion of biomass into electricity through the metabolic activity of the bacteria. Microbial production of electricity may become an important source of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. However, the materials used in these devices are still not economic and researchers use different materials as cathode and anode in MFCs. This results in variable performance which is difficult to compare. We tested several commercially available materials for their suitability as anode in an acetate fed MFC. Besides, a novel non-platinized activated carbon (AC) based, gas porous air cathode was also tested. Both the anode and cathode were tested in a half cell configuration. Carbon cloth, graphite cloth and dynamically stable anode (DSA) served as ideal anode material with carbon cloth and graphite mesh reaching the open circuit voltage (OCV) of acetate oxidation (−500 mV vs. Ag/AgCl). The effect of increasing concentration of acetate on anode OCV was also investigated and results showed that on increasing the acetate concentration from 10 mM to 40 mM has no adverse impact on the anodic activity towards electrochemical oxidation of acetate. The AC cathode showed stable current (−1.2 mA/cm2) over a period of 100 days.

Keywords

Biological Oxygen Demand Analysis, Bioelectric Energy Sources, Acetates, Materials Testing, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
gold