Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Science & Technology
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wastewater nutrient recovery using twin-layer microalgae technology for biofertilizer production

Authors: Inmaculada González; Alice Ekelhof; Natalia Herrero; José Ángel Siles; Björn Podola; Arturo F. Chica; M. Ángeles Martín; +3 Authors

Wastewater nutrient recovery using twin-layer microalgae technology for biofertilizer production

Abstract

AbstractThis study evaluates the feasibility of advanced biofilm microalgae cultivation in a twin layer (TL) system for nutrient removal (N and P) as the tertiary treatment in small wastewater treatment plants (WWTPs) located in sensitive areas. Furthermore, the potential valorisation of microalgae biomass as a component of bio-based fertilizers is assessed. Scenedesmus sp. was chosen among 33 microalgae strains for inoculation of TL due to its high growth rate and its nutrient uptake capacity. The tests carried out in the prototype were markedly efficient for total soluble and ammoniacal nitrogen removal (up to 66 and 94%, respectively). In terms of potential valorisation of microalgae, the nutrient content was 5.5% N (over 40% protein), 8.8% P2O5 and 1.5% K2O, high enzymatic activity, very low levels of heavy metals and no detectable pathogen presence. However, in the formulation of solid-state bio-based fertilizers, the microalgae proportions in blends of over 2% of microalgae led to negative effects on ryegrass (Lolium perenne L. ssp.) and barley (Hordeum vulgare ssp.). The obtained results demonstrate that TL represents a promising technology, which allows efficient tertiary treatment of urban wastewater and the production of high-quality bio-based fertilizer.

Keywords

Microalgae, Biomass, Nutrients, Wastewater, Scenedesmus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
gold