
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wastewater nutrient recovery using twin-layer microalgae technology for biofertilizer production

doi: 10.2166/wst.2020.372
pmid: 33055395
AbstractThis study evaluates the feasibility of advanced biofilm microalgae cultivation in a twin layer (TL) system for nutrient removal (N and P) as the tertiary treatment in small wastewater treatment plants (WWTPs) located in sensitive areas. Furthermore, the potential valorisation of microalgae biomass as a component of bio-based fertilizers is assessed. Scenedesmus sp. was chosen among 33 microalgae strains for inoculation of TL due to its high growth rate and its nutrient uptake capacity. The tests carried out in the prototype were markedly efficient for total soluble and ammoniacal nitrogen removal (up to 66 and 94%, respectively). In terms of potential valorisation of microalgae, the nutrient content was 5.5% N (over 40% protein), 8.8% P2O5 and 1.5% K2O, high enzymatic activity, very low levels of heavy metals and no detectable pathogen presence. However, in the formulation of solid-state bio-based fertilizers, the microalgae proportions in blends of over 2% of microalgae led to negative effects on ryegrass (Lolium perenne L. ssp.) and barley (Hordeum vulgare ssp.). The obtained results demonstrate that TL represents a promising technology, which allows efficient tertiary treatment of urban wastewater and the production of high-quality bio-based fertilizer.
- Spanish National Research Council Spain
- University of Cologne Germany
- University of Córdoba Spain
- University of Córdoba (Spain) Spain
- Cordoba University United States
Microalgae, Biomass, Nutrients, Wastewater, Scenedesmus
Microalgae, Biomass, Nutrients, Wastewater, Scenedesmus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
